Herunterladen Inhalt Inhalt Diese Seite drucken
Inhaltsverzeichnis

Werbung

1 – 2 Technische Daten
Bildschirmteil
1) Ausführung
6-Zoll-Rechteckbildschirm mit Raster, 8 x 10 Div (1 Div = 1 cm), Mar-
kierung für Anstiegszeitfeststellung, 2 – mm – Unterteilung auf den
Zentralachsen (X und Y)
2) Anodenspannung
ca. 1,9 kV (gegen die Kathode)
3) Phosphorisierung
p 31 (Standard)
4) Fokussierung
ja
5) Strahlverstellung
ja
(Trace-Rotation)
6) Intensitätseinst.
ja
Horizontaleingang (Z-Achse), Dunkeltastung
1) Eingangssignal
DC oder AC; + 5 VDC/VACpp oder mehr verursachen eine spürbare
Modulation bei normaler Einstellung der Intensität.
2) Bandbreite
0 (DC) bis 2 MHz ( - 3 dB)
3) Kopplung
DC
4) Eingangswiderstand
20 kΩ bis 30 kΩ
5) Max. Eingangsspannung
30 V (Gleichspannung oder V Spitze, Wechselspannung), galvanisch
vom Netz getrennt
Vertikalablenkung
1) Bandbreite ( - 3 dB)
DC-gekoppelt
DC bis 30 MHz normal
DC bis 10 MHz gedehnt (nur Kanal 1, CH 1)
AC-gekoppelt
10 Hz bis 30 MHz normal
10 Hz bis 10 MHz gedehnt (nur Kanal 1, CH 1)
2) Betriebsarten
CH 1, CH 2, ADD und DUAL
(CHOP: Schalterstellung des TIME/DIV – Schalters 0,2 s – ca. 1 ms
ALT : TIME/DIV – Schalter 0,5 ms bis ca. 0,2 µs)
3) Ablenkungsfaktor
5 mV/div bis 20 V/div, 12 – stufig, in 1 – 2 – 5 – Abstufung; zwischen
den Schalterstellungen stufenlos variabel bis zu 1:2,5.
gedehnt X 5: 1 mV/div bis 4 V/div ebenfalls in 12 Stufen (nur Kanal
CH 1)
4) Genauigkeit normal
±3 %
gedehnt
±5 %
5) Eingangsimpedanz
ca. 1 MΩ parallel zu 30 pF
6) Eingangsspannung
max. 400 V (DC und Vs =VoIt spitze) direkt bzw. bei Verwendung
eines Tastkopfes bezogen auf dessen Spezifikation
7) Eingangskopplung
DC – GND – AC
8) Anstiegszeit
ca. 12 ns (35 ns oder kleiner bei Dehnung x 5)
25 mV/div an 50 Ω: 20 Hz bis 10 MHz (- 3 dB, Gehäuserückseite)
9) CH – 1 – Ausgang
10) Invertierung
nur bei CH - 2 ( Kanal 2)
6
6. Precisley center the trace horizontally with the Horizontal POSITION control (10).
7. Count the number of divisions subtended by the trace along the central vertical gaticule line (dimension
A). You can now shift the trace vertically with CH2 POSITION control to a major division line for easier
counting.
8. The phase difference (angle _) between the two signals is equal to the are sine of dimension A÷B (the
Step 7 number divided by 6). For example, the Step 7 value of the Figure 2-9a pattern is 2.0 Dividing this
by 6 yields 0.3334, whose arcsine is 19.5°
9. The simple formula in Fiugre 2-9a works for angles less than 90°. For angles over 90° (leftware tilt), and
90° to the angle found in Step 7. Figure 2-9b shows the lissajous patterns of various phase angles: use
this as guide in determining whether or not to add the assitional 90°
NOTE
The sine-to-angle conversion can be accomplished by using trig tables or a trig cal-
culator.
2-3-6. Risetime Measurements
Risetime is the time for leading edge of a pulse to rise from 10% to 90% of the total pulse amplitude.
Falltime is the time required for the trailing edge of a pulse to drop from 90% of total pulse amplitude to
10%. Risetime and falltime, which may be collectively called transition time, are measured in essentially the
same manner.
To measure rise and fall time, proceed as follows:
1. Connect the pulse to be measured to the CH1 IN connector (24) and set the AC/GND/DC switch (25) to
AC.
2. Adjust the TIME/DIV switch (15) to display about 2 cycles of the pulse.
Make certain the VAR switch (12) is rotated fully clockwise.
3. Center the pulse vertically with the CH1 Vertical Position control (4).
4. Adjust the CH1 VOLTS/DIV switch (26) to make the positive pulse peak exceed the 100% graticule line,
and the negative pulse peak exceed the 0% line, then rotate the VARIABLE control (27) counterclock-
wise until the positive and negative pulse peaks rest exactly on the 100% and 0% graticule lines. (See
Figure 2-10)
5. Use the Horizontal Position control (10) to shift the trace so the leading edge passes through the inter-
section of the 10% and central vertical graticule lines.
6. If the risetime is slow compared to the period, no further control manipulations are necessary. If the rise-
time is fast (leading edge almost vertical). To set X10 MAG to the X10 MAG position and reposition the
trace as in Step 5.
7. Count the number of horizontal divisions between the central vertical line (10% point) and the intersection
of the trace with the 90% line.
8. Multiply the number of divisions counted in Step 7 by the setting of the TIME/DIV switch to find the mea-
sured risetime. If X10 magnification was used, divide the TIME/DIV setting by 10. For example, if the time-
base setting in Figure 2-10 was 1s/div (1000ns), the risetime wlould be 260 nanoseconds
(1000ns÷10=100ns; 100nsx3.6div=260ns)
9. To measure falltime, simply shift the trace horizontally until a trailing edge passes through the 10% and
center vertical graticule lines, and repeat steps 7 and 8.
47

Werbung

Inhaltsverzeichnis
loading

Inhaltsverzeichnis