Proline Promass F 200
Messprinzip
Endress+Hauser
Symbol
Bedeutung
A, B, C, ...
Ansichten
A-A, B-B, C-C, ...
Schnitte
Explosionsgefährdeter Bereich
-
Sicherer Bereich (nicht explosionsgefährdeter Bereich)
.
Durchflussrichtung
Arbeitsweise und Systemaufbau
Das Messprinzip basiert auf der kontrollierten Erzeugung von Corioliskräften. Diese Kräfte treten in
einem System immer dann auf, wenn sich gleichzeitig translatorische (geradlinige) und rotatorische
(drehende) Bewegungen überlagern.
F
= 2 · ∆m (ν · ω)
c
F
= Corioliskraft
c
∆m = bewegte Masse
ω = Drehgeschwindigkeit
ν = Radialgeschwindigkeit im rotierenden bzw. schwingenden System
Die Größe der Corioliskraft hängt von der bewegten Masse ∆m, deren Geschwindigkeit ν im System
und somit vom Massefluss ab. Anstelle einer konstanten Drehgeschwindigkeit ω tritt beim Messauf-
nehmer eine Oszillation auf.
Beim Messaufnehmer werden dabei zwei vom Messstoff durchströmte, parallele Messrohre in
Gegenphase zur Schwingung gebracht und bilden eine Art "Stimmgabel". Die an den Messrohren
erzeugten Corioliskräfte bewirken eine Phasenverschiebung der Rohrschwingung (siehe Abbildung):
• Bei Nulldurchfluss (Stillstand des Messstoffs) schwingen beide Rohre in Phase (1).
• Bei Massefluss wird die Rohrschwingung einlaufseitig verzögert (2) und auslaufseitig beschleunigt
(3).
1
Je größer der Massefluss ist, desto größer ist auch die Phasendifferenz (A-B). Mittels elektrodynami-
scher Sensoren wird die Rohrschwingung ein- und auslaufseitig abgegriffen. Die Systembalance wird
durch die gegenphasige Schwingung der beiden Messrohre erreicht. Das Messprinzip arbeitet grund-
sätzlich unabhängig von Temperatur, Druck, Viskosität, Leitfähigkeit und Durchflussprofil.
Dichtemessung
Das Messrohr wird immer in seiner Resonanzfrequenz angeregt. Sobald sich die Masse und damit die
Dichte des schwingenden Systems (Messrohr und Messstoff) ändert, regelt sich die Erregerfrequenz
2
3
A0028850
5